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Edward J. Wegman and Raymond J. Carroll
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ABSTRACT

Andrews et al {1972) carried out an extensive Monte Carlo
study of robust estimators of location. Their conclusions were
that the hampel and the skipped estimates, as classes, seemed to
be preferable to some of the other currently fashionable estima-
tors. The present study extends this work to include estimators
not previously examined. The estimators are compared over short-
tailed as well as long-tailed alternatives and also over some
dependent data generated by first-order autoregressive schemes.

The conclusions of the present study are threefold. First, from
our limited study, none of the so-called robust estimators are very
robust over short-tailed situations. More work seems to be neces-
sary in this situation. Second, none of the estimators perform
very well in dependent data situations, particularly when the
correlation is large and positive. This seems to be a rather
pressing problem. Finally, for long-tailed alternatives, the ham-
pel estimators and Hogg-type adaptive versions of the hampels are
the strongest classes. The adaptive hampels neither uniformly out-

perform nor are they outperformed by the hampels. However, the
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superiority in terms of maximum relative efficiency goes to the
adaptive hampels. That is the adaptive hampels, under their worst
performance, are superior to the usual hampels, under their worst

| performance.

1. INTRODUCTION

Andrews et al (1972) have published a very extensive and in-
formative Monte-Carlo study of robust estimation of location in a
syrmetric probability density. This study involved some 68 estima-
tors of location as well as 14 distinct sampling distributions.
Sample sizes used were 5, 10, 20 and 40 although for most of the
sampling situations only the sample size of 20 was investigated.
For the estimators and sampling situations examined, they provide
a very complete and satisfactory picture.

We are motivated, however, to supplement this study for three
basic reasons. In Andrews et al, (Princeton Robustness Study)
(1972, p. 67), hereafter referred to as PRS, short-tailed sampling
situations are ruled out of consideration with the statement,
""Robustness for short-tailed distributions was thought to be a
rather special case, arising in situations that are usually rather
easily recognized in practice." It is our contention that short-
tailed data do arise in practice. For example, Professor R. V.
Hogg points out that studies at the Iowa Testing Service, home of
the ACT college entrance examination, clearly show that scores on
these examinations tend to arise from short-tailed distributions.
Our personal experience with instrumentation data from U. S. Naval
projects also convinces us that data passing through one or more
sets of electronic instruments often tend to be characterized by a
short-tailed distritution. Moreover, since some of the location
estimators were designed to protect against short-tailed alterna-
tives as well as long-tailed possibilities, we believe that exami-
nation of long-tailed alternatives alone faults such estimators un-
fairly, rather akin to discovering a two-sided test is not most
powerful against one-sided alternatives. Even ignoring this




aspect, the question remains, 'What are desirable estimators given
short-tailed alternatives?"

A second motivation was provided by the rather dismal situa-
tion in the time series context. The sample mean is routinely
shown to be a consistent estimator of the "center' of a stationary
time series with the clear implication that a time series is cen-
tered by subtracting the sample mean. One might suggest that one
first remove the autocorrelation by fitting some sort of autore-
gressive (AR) or moving average (MA) scheme and then use X to
estimate the center of the errors which in the stationary case is
the same as the center of the time series. Unfortunately to fit an
AR or a M\ scheme requires that we have a zero mean time series,
i.e. a centered time series. Thus a robust estimate of location in
a time series context is a matter of practical concern. If the
sample mean is unsatisfactory for independent, but non-normal data,
how much worse must it be for correlated data?

Our third motivation arises from a personal conviction that
adaptive estimators, properly formulated, ought to be very success-
ful. In particular, we observe that because of the contributions
of Professors Hampel and Huber to the PRS, the so-called hampel and
closely related M-estimators were extensively studied. At least 25
of the 68 estimators studied involve either a hampel or a M-estima-
tor. The M-estimators and particularly the hampels perform very
well both because they are good estimators and because they were
fine-tuned. The adaptive estimators, however, were not similarly
fine-tuned and do not fare as well in the final analysis. To state
our conviction succinctly, if hampels are good, adaptive hampels
should be better.

The paper is divided into five parts. Section 2 lists the
estimators studied in this paper and presents a short discussion.
Section 3 discusses the details of the Monte-Carlo aspects of this
work while section 4 contains the tables of results. Finally, sec-
tion 5 contains our reactions to and conclusions about the results.
We note here that this paper is not intended to compete in scope or
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in detail with the PRS. The latter was a long and arduous study.
We believe because of this, the PRS has and will formulate direc-
tions of research for some time, unfortunately in our view, away
from adaptive estimators. Our intention is, therefore, to present
evidence that adaptive estimators are at least competitive. Our
adaptive procedures are based on experimentation and intuition and
should be taken as first generation refinements. We are quite sure

adaptive estimators can be further improved.

2. THE ESTIMATORS

In choosing which estimators to examine in this study, we were
guided by the results of the PRS. As standards of comparison, we
chose M-estimators and the related hampels and the trimmed means.
Against these standards, we measured various forms of adaptive
estimators and several miscellaneous estimators — including the
Hodges-Lehmann, Normal Scores Rank Estimator, Johns', and an esti-
mator based on skipping. We follow the routine established in the
PRS by listing the estimators together with the mnemonic codes in
table I. We note here that the codes described below agree with

those in the PRS when an estimator is common to both works.

Trimmed Means

A simple scheme for robustifying the mean is to eliminate
"extreme' observations. The «(100)% symmetric trimmed mean dis-
cards the [(N+1)a] largest and [(N+1)a] smallest observations
and computes the mean of the remaining observations. Here, [-]
is the greatest integer function. The outer-mean, OM, is sometimes
used in short-tailed situations and is computed as the mean of the

trimings with o = .25.

Huber's M-Estimators and Hampels
M-estimators of location arc solutions, T, of the equation

n [X.-T

Y ¥ld—| = 0.
=1 | °

Hampel (1974) proposed estimating the scale, S, with




TABLE I

A Brief Description of the 19 Estimators of Location Together With
a Mnemonic Code for Each

Number Code Short Description
1 10% 10% symmetrically trimmed mean
2 50% 50% symmetrically trimmed mean (median)
3 M Mean
4 OM Outer mean, mean of trimming after 25% symmetrical
trimming
5 12A One-step hampel M-estimate, ¥ bends at 1.2,3.5,8.0
6 17A e-step hampel M-estimate, Y bends at 1.7,3.4,8.5
7 ZIN One step hampel M-estimate, y bends at 2.1,4.0,8.2
8 257 One-step hampel M-estimate, Y bends at 2. 5,4,5,9 5
9 ADA Adzptive hampel M-estimate, Y bends at ADA,4.5,8.0
10 HG1 Hogg-type adaptor using trimmed means 38%,19%,M,0M

11 HG2 Hogg-type adaptor using trimmed means 38%,25%,10%
12 1.81%A Hogg-type adaptor using hampels 25A,21A,12A

13 1.90A Hogg-type adaptor using hampels 25A,ADA,17A

14  1.95A Hogg-type adaptor using hampels 25A,ADA,17A

15 2.00A Hogg-type adaptor using hampels 21A,12A

26 ¢ H/E Hodges-Lehmann estimator

17 RN \ormal scores rank estimator

18 JOH Johns' adaptive estimator

19 5T4 Multiply-skipped mean, max(5k,2)<.6N deleted

medlxi-SO%I/.674S. The hampel estimators are M-estimators with y

given by
(x| 0<|x|<a
a as<|x|<b
b(x) = sgn x =9
cclxl -« a  bg|x|<c
| 0 |x|zc .

The parameters a, b and c¢ are given below together with the

code symbol.
Code a b c
12A 1.2 3¢ 5 8.0
17A X7 3.4 8.5
21A 21 4.0 ol
25A 2:9 4.5 9.5
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ADA is a mildly adaptive form of the hampel.
The hampels examined in this work are one-stop estimators (cf.
Bickel (1975)), that is they are not the exact root of

n Xi-T
EW—S‘——"O,
i=1

but the result of one iteration of the Newton-Raphson method using
50% (the median) as starting value. More complete details of
these estimators may be found in the PRS.

Hogg-Type Adaptors

Hogg (1974) has suggested an adaptation procedure which
chooses among two or more estimates of the center depending on the
value of some statistic chosen to measure tail length. Hogg origi-
nally suggested use of the kurtosis, while more recent suggestions
include

(U(.05)-L(.05))/(U(.50)-L(.50})
(U(.20)-L(.20))/(U(.50)-L(.50)),

Q
Q,

where U(a)(L(a)) is the mean of the largest (smallest) [(N+1)o]
observations. The exact form of the various adaptors is given
below. Here k% denotes a k% symmetrically trimmed mean.

Code Formulation
[38% Yy>3.2
D)

HGL T = {19% 2.6<Qq<3.2
M 2.0<le2.6
oM =2.0
[38% Q,>1.87

HG2 T = 125% 1.817Q,<1.87

]10% Q,s1.81
[ZlA 1.81<Q,<1.87

1.81*A T = 125A  Q,<1.81

llZA Q,>1.87
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Code Formulation
JADA 1.90<Q252.05
1.90A T = {25A Q251.90

(178 Q,>1.87

[ADA  1.95<Q,<2.10
1.95A T = {25A Q,s<1.95
174 Q,>2.10

21A Q,<2.00
124 Q,>2.00

2.00A T =

Rank Estimators

In what follows, let Ri(e) denote the signed ranks of xi—e.
That is, we rank xl~e,x2-6,...,xn-6 according to magnitude (but
not sign) and Ri(a) is the product of sgn(xi~e) and rank of
(x;-6). Further let us define J() = Q—I(EEE), where & is the
normal distributicn function. The rank statistic with normal

scores, (RN), is taken as the root, T, of the equation

J*(M)-J = 0
where
g*(1) = "t 1% J(R, (1)/n+1)
and
SRS S e
J=n Y J(i/n+l).
i=1

The symbol, }*, indicates the summation over all positive ranks.
Roots were found by the method of bisection using a maximum of
twelve iterations. If & is taken as uniform, the resulting rank
statistic is asymptotically equivalent to the Hodges-Lehmann esti-
mator (cf. Hodges-Lehmann (1963). Details of Johns (1974) and the
skipped estimate may be found in the PRS.

3. MONTE-CARLO DETAILS

In addition to the long-tailed sampling situations investi-
gated in the PRS, we also investigated short-tailed situations and

§
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situations involving dependent data. Pseudo-random numbers were

generated by a multiplicative congruential generator. Cycle time
was constructed to be considerably larger than the number of obser-
vations needed for this study. We also checked for bias, variance,
and serial correlation and the generator was suitable in these
respects. (See the PRS for description and cautions in the use of
these generators.) The output, scaled between 0 and 1, form the
basis for all subsequent calculations since they approximate a
uniformly distributed sample. Normal pseudo-random deviates were
generated according to the well-known Box-Muller transform (cf.
Paley and Wiener (1934), p. 146) and Cauchy pseudo-random deviates
were generated by the tangent transform. These three basic distri-
butions, or mixtures thereof, form the basis of all results
reported in this work.

The basic sampling situations are summarized in Table II.

TABLE II

Sampling Situations for Independent Observations (n = 20). N/U is a
Normal (0,1) Variate Divided by an Independent Uniform Variate

Distributions Code

Uniform, mean 0, variance 1 (denoted U(0,1) ) U

97% Uniform (0,1) + 3% Normal (0,1) contamination U+.03N(0,1)
90% Uniform (0,1) + 10% Normal (0,1) contamination U+.10N(0,1)
50% Uniform (0,1) + 50% Normal (0,1) contamination U+.50N(0,1)
Normal, mean 0, variance 1 N(0,1)=N

99% Normal (0,1) + 1% Normal (0,9) contamination N+.01N(0,9)
97.5% Normal (0,1) + 2.5% Normal (0,9) contamination N+.025N(0,9)
95% Normal (0,1) + 5% Normal (0,9) contamination N+.05N(0,9)
90% Normal (0,1) + 10% Normal (0,9) contamination N+.10N(0,9)
75% Normal (0,1) + 25% Normal (0,9) contamination N+.25N(0,9)

95% Normal (0,1) + 5% Normal (0,100) contamination N+.05N(0,100)
90% Normal (0,1) + 10% Normal (0,100) contamination N+.10N(0,100)
75% Normal (0,1) + 25% Normal (0,100) contamination N+.25N(0,100)
97% Normal (0,1) + 3% Cauchy contamination N+.03C

90% Normal (0,1) + 10% Cauchy contamination N+.10C

50% Normal (0,1) + 50% Cauchy contamination N+.50C
Cauchy, medion = 0 C

90% Normal (0,1) + 10% N/U N+.10N/U

75% Normal (0,1) + 25% N/U N+.25N/U




In addition to the sets of independent observations discussed
above, we generated observations according to a first order auto-
regressive scheme, xj = pxj_l + € > 3= 1,2,...,200 ‘The shoek,
Ej , was chosen according to either N, U or C and the correla-
tion coefficient, p, as either .2, .5 or .9. The initial
value, Xp » Was chosen as 0. All of the 19 estimators discussed
in section 2 were investigated in the 19 independent sampling situ-
ations. Only the non-adaptive estimators were studied in *he 9
time-series sampling achemes.

The results we report are based on 1000 Monte-Carlo replica-
tions. The sample variances of the estimators were calculated and
then scaled by a factor of 20 (the sample size) to make the results
comparable to those in the PRS. Assuming approximate normality for
the estimators, the variance of 20x sample variance would be
about .79920% where o% is the grue va;iance of the estimator,
T. For example if T = X, then op is 75 and the variance of 20
times the sample variance is .001998. Thus one may expect about
one decimal place of accuracy with correspondingly less signifi-
cance as the value 0% climbs. We report two decimal places, in
most cases, because all estimators were calculated over the same
samples. Without attempting inferences outside these samples, the
extra decimal place(s) are meaningful.

» 4. THE RESULTS

3
v

The main results of the Monte Carlo study are summarized in 2
tables. Table III is a table of sample variances (over the 1000
Monte-Carlo replications) for the 19 independent sampling schemes
and 19 estimators of location. The symbol #*#** in Table III refers
to a variance exceeding 100.00. Table IV is a table of biases and
variances for the 9 sampling schemes involving first order autore-
gressive variates. None of the Hogg-type adaptive estimators are
listed for the two-fold reason that the choice of Q; and Q, is
predicated on independent observations and that the basic estima-
tors — trimmed means, hampels, etc. — perform poorly. Some

/0




TABLE III

Variances of 19 Estimators of Location Based
* on 1000 Monte Carlo Replications

=io s gidde e

Sls | =i e

21 8 |ols s (s |Ble]2 2|2
1{10% 123441 321037113 1 Lh L0511 2311 .24 1.32
2150% 2.48(2.4312.5111.8211.55[1.49({1.54]1.67|1.72
3IM 1.01f{ .98]1.05( .94])1.05/1.0411.24{1.45|1.82
410M .61 .60| .67| .84(1.25|1.31]1.87|2.27(3.37
5/12A 1.82/1.97;1.85[1.42[1.14|1.13]1.26]1.36]1.46
6{17A 1.4111.5211.46(1.22(1.06{1.05]1.18]1.27(1.39
7121A 1.20}1.30(1.26}1.111.05/1.01(1.16(1.24(1.38
8!25A 1.08{1.17|1.14{1.04|1.03| .98{1.13|1.23(1.38
9(ADA 1.1911.31{1.28(1.11{1.06/1.02{1.17|1.28|1.43
10|HG1 .80| .80| .88} .96(1.11/1.06/1.19/1.28|1.41
11 |HG2 1.39/1.37|1.41|1.19{1.16(1.12}1.21{1.31|1.37
1211.81*A}1.11(1.2111.17/1.08}1.05{1.01/1.18/1.26{1.41
13/1.90A |1.09/1.18{1.15{1.05{1.03| .9911.15]/1.25(1.40
14(1.95A (1.08(1.18({1.14(1.0411.03( .98(1.14({1.24(1.39
15{2.00A 11.20(1.30}1.26(1.11{1.05/1.02|1.16(1.24]1.39
16 |H/L 1.2111.28(1.25/1.09{1.03(1.01{1.14{1.26{1.38
17 |RN .89 .94| .97| .94|1.01| .98|1.14(1.26|1.45
18 |JPH .88 .88 .93| .95/1.06]1.02{1.20({1.25(1.47
19|5T4 1.2211.28)1.27/1.10/1.08|1.05/1.20(1.29|1.47
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TABLE IV
w. Biased and Variances for 12 Estimators of Location with First-Order Autoregressive Data.
Note that *** js a Value Larger than 9999.99.

W DISTRIBUTION ZOE,N?r ZOEMZ.. ZO%M\F QEMH.Q gcm~._< QEM_Q CZHWO_NZ CZHMOES CZHWOES
NIMBER| CODE | oo 2 ol 8 al 8 i Baleu e el Byl Flal g
MWMWBWMWMWMVNVMVMV 0
7 | 10% -.01{1.63(.02|3.62|.02{62.0] .02 50.0 .2517460, [-34.3|***} ,00{1.87|-.01{4.107.12{57.5 iEo
2 50% -,00{2.01|.0214.18].02{65.3| .00 8.19| .01 65.7|-29.1|***{-,00|3.21|-.0115.15(.12]60.7
ﬁ » 3 M -.0111.571.02{3.59|.03{61.0| .24{3742. .98 ®&% .36 2|**%*! 00(1.50|-.01|3.68{.12|56.3
w 4 oM -,0111.791.02(3.91]|.04|60.1| .49 %k 1.98 ®k% 1.41,2({***| .00{1.00(-.01/3.18{.11|54.9
4 5 12A .0011.751.02]3.81|.02163.9| .00 eS| 0Z 50.9(-30.5|***| ,00|2.43|-.02{4.63|.12(59.4 “
F 6 17A -.01{1.66}.02]3.68}.02/62.9| .00 8.69| .02 61.8|-32.0{***| ,00{1.99(-.014.26/.12{58.2 |
3 7 21A -,0111.621.0213.64].02162.4| .00 9.41| .02 68.0(-32.8|***{ ,00/1.76|-.01{4.06/.12|57.8 .
ﬂr 8 25A -.01]1.59].0213.62(.02|61.9| .00 10.7 .03 79.61-33.5|***| . 00{1.62|-.01(3.89|.12|57.3
9 ADA .00]1.64(.0213.681.02(62.4| .00 7.95| .02 55.6(-33.3!***| _00[1.79(-.01|4.06/.12|57.9
{ 10 H/L -,00{1.61(.01(3.641.02162.2|-.02 18.8 |-.09| 727, |-34.4|***| 00|1.75|-.01|4.04|.12|57.4
w 11 JPH -.0011.63}.02)3.741.03/61.1/-.00 10.3 |-.02) 161. |-38.5|***| . 01]/1.32{-.01/3.68/.11|56.8
12 5T4 -,0111.66(.0213.70].02162.3}|-.01 8.00] .03 59.8(-34.8|***| _01]1.74|-.01{4.05|.12|57.8
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‘: Q z = Z =z z Z Z O Z =
% 1/10% 2.0211.2212.16(9.1211.13}1.22{2.70{8.34;1.23({1.80
| 2150% 2.08{1.58{1.9412.56(1.55/1.59/2.06}2.83}1.61}2.00
: 3|M 2.96(5.45/11.5|26.0]72.9 %*% |*ik }kikx |xkik | ki
2 4|10M 5.80117.3/38.1(85.3 hikk | Rk | Rkk | k% | k% | k%%
S{12A 1.87(1.27(1.4412.48(1.26|1.30/1.68|2.76{1.29({1.58
6{17A 1.89{1.18{1.37{2.82}1.17|1.22|1.72|3.21|1.21|1.51
7121A 1.96{1.16/1.36|3.11}1.14|1.211.73|3.58{1.19{1.50
8125A 2.0711.15{1.39|3.60|1.11|1.18]|1.89|3.93{1.18{1.53
9|ADA 1.9811.19{1.42{2.67{1.15(1.24{1.74(3.01{1.23{1.57
10{HG1 2.1411.28{1.7414.26/1.16{1.3011.88/3.3011.31}1.69
11!HG2 1.9311.29(1.66(2.80{1.20{1.30{1.84{2.83{1.30{1.66
12(1.81%A{1.97(1.19(1.42{2.59{1.15{1.24{1.69{2.8411.22}1.54
13{1.90A }2.01)1.17)1.38]2.86/1.12]1.21]1.75}3.30/1.20|1.52
14}1.95A {2.0141.16]1.383.01!1.12}1.20{1.74;3.31{1.20;1.52
15{2.00A {1.94;1.18(1.42{2.77{1.15{1.23|1.74{2.98{1.21{1.49
16|H/L 1.9711.22]1.65(4.04]1.14}1.2412.01|4.57}1.25|1.73
17 |RN 2.2411.28{1.95{5.93(1.12(1.28(2.46|6.76|1.31|1.93
18 |{JOH 2.19(1.24(1.52(4.38{1.16{1.27(1.73{3.25(1.28(1.62
19|5T4 1.98{1.24}1.4213.73{1.20{1.25{1.66!3.00(1.26(1.54

preliminary calculations indicate that Hogg-type adaptors perform
similarly under the time series alternatives.
We withhold discussion of these results to section 5.

5. DISCUSSION AND CONCLUSION

Table III contains many estimators with fairly comparable
variance. In order to make the better estimators more apparent,
we have constructed an additional table, Table V. Let Ti s
i=1,...,1000 represent the 1000 observations of an estimator of

location, and let

1000
e .k o 2
o 1 L
i=1
" : be the sample variance. Assuming the T,’s are approximately
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1000s2

2
¥ 2
999 degrees of freedom. Accordingly, the variance of St
.0019980$ and the variance of 205% is .79920% as pointed out
earlier. An estimate of the standard deviation of s% can be
found by calculating v.001998 s% = .04475% . Table V was con-

structed by calculating the estimated standard deviation for the

a2
normal, then is distributed approximately as a ¥~ with

a

is

estimator with the smallest variance.
If an estimator had a variance that fell within one standard
deviation of the minimal variance, then it was replaced by a "0"

in Table V. If the variance was more than one standard deviation
but less than two, it was replaced with a '"1'" in Table V. Simi-
larly for '2", "3" and "4'". Finally if the variance was more
than 5 standard deviations away from the minimal variance, it was
simple replaced by "5'". Thus Table V leaves a clear picture of
the stronger estimators.

In terms of the 4 light-tailed alternatives the estimator of
choice appears to be the outer mean. From Table V we observe that
HGl, RN and JOH also perform creditably but significantly more
poorly than OM.

We believe that the uniform is a highly artificial situation.
The contamination of a normal by a distribution whose support is a
bounded interval seems less so. While this very small selection
of short-tailed alternatives is inadequate for sweeping cormitt-
ments to certain types of estimators, it is very suggestive of what
is reasonable. It is clear that most estimators do very poorly in
short-tailed situations. Some authors suggest that whenever short-
tailed alternatives arise, we will be able to recognize them and
having recognized them, use some appropriate estimator such as OM.
We believe that this is really a very crude form of adaptive pro-
cedure based on intuition or some other form of non-statistical
knowledge. It is therefore not really satisfactory, and we believe

some more formal procedures such as Hogg's procedure are desirable.
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Just as dramatic as the OM's good performance in the short-
tailed situations is its bad performance in every long-tailed situ-
ation. Table VI also distinguishes several classes of strong per-
formers in heavy-tailed situations. As a class, the hampels appear
strong in spite of the appearance of 5’s. The adaptive hampels
also appear very strong with the added bonus of no 5’s in long-
tailed situations.

In the P25, the concept of deficiency is introduced in order
to provide a comparison of two estimators. The efficiency of an
estimator under test relative to a standard estimator is defined by

variance of standard
variance

efficiency =
and the deficiency by
deficiency = 1 - efficiency.

Notice that a negative deficiency means the estimator is more effi-
cient than the standard. Thus deficiency is centered at 0 with
negative meaning the standard is less efficient and positive mean-
ing more efficient. ‘

We feel the advantage of the zero reference point is out-
weighed by the following anomaly. In a sense, efficiencies of 2
and % mean the same thing (interchanging the roles of the stan-
dard estimator with the test estimator). The corresponding defi-
ciencies of % and -1 are not symmetrically located about 0
and, on the intuitive level, not apparently related.

Rather than compute deficiency, we have computed the natural
logarithm of the efficiency ratio which also has a 0 reference
(for efficiency 1 ) and is symmetrical in the sense that 2&nZ =
-%n%. The logarithm of the efficiency also has the advantage that
in order to shift standards, only a simple subtraction is neces-
sary. Table VI gives logarithms of efficiencies for a variety of
the better performing estimators relative to 1.95A. To illustrate
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Deviations of the Variances of 19 Estimates of Location
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the change of standard, the log efficiency of 25A relative to 1.95A
under Cauchy alternative is -.172 while the log efficiency of
1.81*A relative to 1.95A is .153. Thus the log efficiency of 25A
relative to 1.81*A is just -.172 - ,153 = -,325. Note that a
negative log efficiency means the standard is less efficient than
the test estimator.

In Test VI, 1.95A was used as a standard although it was not
uniformly the best. However, we feel it adequately represents the
class of adaptive hampels. For the moment, let us consider Table

VI based on variances.




TABLE VI

Logarithm of the Relative Efficiency at 1.95A.

17A | 21A | 25A | ADA [1.81*A[1.90A{2.00A| H/L | 5T4

N(0,1) -.029| .019| .000{-.029(-.019 | .000{ .010( .000|-.047
N+.01N(0,9) [-.069(-.030| .000| .040|-.030 |-.010|-.040{-.030|-.069
N+.025N(0,9) (-.034{-.017{ .009{-.026{ .034 {-.009|-.017| .000|-.051
N+.05N(0,9) |[-.024! .000{ .008|-.031|-.016 |-.008| .000|-.016]-.062
N+.10N(0,9) .000; .007| .007|-.028}-.014 |-.007} .000] .007|-.056

N+.15N(0,9) .013} .020{ .007(-.020; .013 | .007| .013{ .007(-.032
N+.25N(0,9) 0620 .025 -.029¢ .015} .020 { .000| .035{ .020; .015
N+.05N(0,100) {-.017( .000| .009;{-.026(|-.026 |-.008;-.017( .050(-.067
N+.10N(0,100) | .007; .015{-.007}-.029;-.029 | .000}-.029;-.179|-.029
N+.25N(0,100)} .065;{-.033|-.179| .120| .150 | .0S51| .083|-.294;-.214

N+.03C —.044!—.018 .009(-.026{-.026 | .000|-.026/-.018]-.069

N+.10C -.016/-.008| .017|-.033]-.033 |-.008|-.025|-.033|-.041
N+.50C .012! .006|-.083| .000| .029 |-.006]| .000|-.144] .047
C .OSli-.078 ~-.172| .095} .153 | .003| .105|-.322| .098
N+.10N/U -.008| .008f .017(-.025|-.017 | .000|-.008|-.041|-.049

N+.25N/U .007; <013 -, 007]~-.0521{-.013 | .000} .020}-.129]-.013

When compared to ADA, H/L and 5T4, 1.95A dominates in the
sense that there are more negatives than positives. In these cases,
the magnitude of the negative log efficiency is generally much
greater than that of positive log efficiency. For example, the
largest negative log efficiency for 5T4 is -.214 while the lar-
gest positive log efficiency is only .098. The only clear excep-
tion to this rule in these cases is the positive .120 for ADA.

We can point out that relative to 1.81*%A, ADA does not exhibit this
behavior.

When compared to the hampels, the adaptive hampels do not
usually dominate in terms of sign. That the adaptive hampels do
not uniformly dominate is an entirely reasonable outcome. The
adaptive estimators are, after all, dynamic averages of the non-
adaptive versions. Thercfore, we could not reasonably expect to
achieve the very best behavior of the non-adaptives, but we should
be able to get quite close. Morcover adaption allows us to avoid
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the worst pitfalls. Thus, the worst case behavior still applies.
For example, 25A has a positive log efficiency in 10 of the 16
cases. However, the maximum positive log efficiency is only .017
whereas the smallest negative log efficiency is -.179. For 22A
the maximum positive log efficiency is .015 while the worst nega-
tive case is -.051, and so on.

To summarize, with adaptive hampels, one may lose a slight bit
of efficiency in some cases, but gain a rather large amount in
others. In this sense if hampels are good, adaptive hampels are
better.

There is also some question in our minds whether Q and Q
are the most suitable measures of heavy-tailedness. In particular,
as Hogg has suggested in a private communication, although a sample
may be drawn from a symmetric population the sample may have sig-
nificant asymmetries. Thus an adaptive procedure accounting for
such asymmetries should be able to improve procedures such as HG1
and HG2 as well as the adaptive hampels. Also we feel work needs
to be done in adapting to light tails. A more sensitive measure
of light-tailedness may improve the efficiencies there also. In
regard to adaptive estimation, we must take exception to the PRS.
Properly formulated, blatantly adaptive estimators perform at least
as well as non-adaptors for sample sizes less than 40.

Finally we may address ourselves to Table IV and the time
series alternative. A word on the design of the sampling situa-
tions in in order. For the first order autoregressive model

Xp = X 1 * € s t=1,2,...,n

a negative value of p guarantees a spectrum dominated by high
frequencies. In this circumstance observations will occur on both
"sides" of the center. For positive values of p low frequencies
dominate. Hence for positive p, particularly for p close to 1
the time series could make long excursions on one 'side'" of the

center. Thus the difficulty in location estimation in a time
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series is cluse to nonstationarity. Gastwirth and Rubin (1975)
discuss robust estimation in precisely this situation. In particu-
lar, they derive efficiencies of several estimators relative to the
mean M. Unfortunately,as Table IV clearly demonstrates,M is on the
whole unsatisfactory. It is our assessment that no estimator pre-
sently fashionable is very satisfactory in the presence of posi-
tively correlated data.

A more complicated time series situation might have been to
examine a time series which is contaminated by (possibly) uncorre-
lated observations. The general performance as seen in Table IV

did not seem to warrant this investigation, however.

ACKNOWLEDGEMENTS

The work of Professor Wegman and the development of the compu-
ter routines were supported by the Air Force Office of Scientific
Research under grant number AFOSR-75-2840.

BIBL IOGRAPHY

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers,
W. H., and Tukey, J. W. (1972), Robust Estimates of Location:
Survey and Advances, Princeton, N.J.: Princeton Univ. Press.

Bickel, P. J. (1975), One-step Huber estimates in the linear model,
J. dm. Statist. Assoc., 70, pp. 428-434.

Box, G. E. P. and Muller, M. E. (1959), A note on the generation of
random normal deviates, Ann. Math. Statist., 29, pp. 610-611.

Carroll, R. J. and Wegman, E. J. (1975), A Monte-Carlo study of
robust estimators of location, Institute of Statistics Mimeo
Series 1040, Univ. of North Carolina, Chapel Hill, N.C.

Gastwirth, J. and Rubin, H. (1975), The behavior of robust estima-
tors on dependent data, Ann. Statist., 3, pp. 1070-1100.

Hampel, F. (1968), Contributions to the Theory of Robust Estima-
tion, Ph.D. Dissertation, Univ. of California at Berkeley.

Hampel, F. (1974), The influence curve and its role in robust esti-
mation, J. Am. Statist. Assoc., 69, pp. 383-393.

Hodges, J. L. and Lechmann, E. L. (1963), Estimates of location
based on rank tests, Ann. Math. Statist., 34, pp. 598-611.

/7




Hogg, R. V. (1974), Adaptive robust procedures: A partial review
and some suggestions for future applications and theory, J.
Am. Statist. Assoe., 69, pp. 909-923.

Huber, P. J. (1964), Robust estimation of a location parameter, Am.
Math. Statist., 35, pp. 73-101.

Johns, M. V. Jr. (1974), Nonparametric estimators of location, J.
Am. Statist. Assoe., 69, pp. 453-460.

Paley, R. E. A. C. and Wiener, N. (1934), Fourier Transforms in the
Complex Domain, Providence, R.I.: American Mathematical
Society.




